



# Hybrid-Phase Metal Oxide Thin-Film Transistor Technology

#### DENG Sunbin (邓孙斌)

State Key Laboratory of Advanced Displays and Optoelectronics Technologies, The Hong Kong University of Science and Technology Email: sdengaa@connect.ust.hk

Young Leader Conference, ICDT 2021

2021/06/02

Outline





## Part 1: hp-ITZO <u>Thin Films</u>

### Metal Oxide (MO) TFT Technology



### Call for Higher-Mobility MO TFTs in Displays



New low-temperature processed MO semiconductors (beyond a-IGZO) with boosted mobility for large-area electronics?





T. Kamiya, et al. Sci. Tech. Adv. Mater., 11(4), 044305, 2010.
 L. Zhou, et al. J. Display Technol., 12(10), 1064-1069, 2016.

### **Mobility Boost in AOS Materials**

For common amorphous oxide semiconductor (AOS) materials → element composition modification (e.g., ln<sup>3+</sup>↑)





#### However, an upper mobility limit is predicted in AOS.<sup>[3,4]</sup>





[1] H. Hosono, J. Non. Cryst. Solids, 352(9-20), 851-858, 2006.

[2] M. Lokanc, et al. NREL., 2015.

[3] K. A. Stewart, et al., J. Non. Cryst. Solids, 432, 196-199, 2016.

[4] K. A. Stewart, et al. J. Soc. Info. Display, 24(6), 386-393, 2016.

[5] J. E. Medvedeva, et al. Adv. Electron. Mater., 3(9), 1700082, 2017.

### Hall Mobility vs. Crystallinity in In<sub>2</sub>O<sub>3</sub> Films

#### Hall mobility of In<sub>2</sub>O<sub>3</sub> film with different crystallinities





InO polyhedra interconnection in  $In_2O_3$  films with low (solid) and high (dashed) crystallinity



| InO <sub>x</sub> inter-<br>connection | Ave. In-In<br>distance | Ave. In-O-In<br>angle | Remark            |  |
|---------------------------------------|------------------------|-----------------------|-------------------|--|
| Non-shared                            | 3.8 Å                  | -                     |                   |  |
| Corner-shared                         | 3.5 Å                  | 115°                  | In 5s-<br>orbital |  |
| Edge-shared                           | 3.3 Å                  | 98°                   | radius ≈          |  |
| Face-shared                           | 3.1 Å                  | 71°                   | 1.0 A             |  |
|                                       | 4                      |                       |                   |  |

Best spatial extension capability for overlapped indium 5s-orbitals.

- ✓ Hybrid phase (hp): the onset of crystallization (>80% InO<sub>x</sub> polyhedra are corner-shared)
- → Efficient long-distance chaining for the formation of welldefined electron percolation conduction paths
- → Hall mobility peak, good electrical uniformity, low-temperature processing, etc.
- □ Binary hp-In<sub>2</sub>O<sub>3</sub> → Multicomponent hp-MO for cost reduction ?

D.B. Buchholz, et al. Chem. Mater., 26(18), 5401-5411, 2014.
 J. E. Medvedeva, et al. Adv. Electron. Mater., 3(9), 1700082, 2017.

7

## hp-ITZO Thin Film Deposition

#### Poly-ITO + Poly-ZnO



hp-ITZO

- ✓ hp-ITZO thin films: an amorphous matrix with a number of columnar nanocrystals (including ZnO, Zn<sub>3</sub>ln<sub>2</sub>O<sub>6</sub>, Zn<sub>4</sub>ln<sub>2</sub>O<sub>7</sub>, etc.) embedded.
- □ Similar XRD spectrum and HRTEM image → Hall mobility peak?

S. Deng, et al. Appl. Phys. Lett., 109(18), 182105, 2016.
S. Deng, et al. IEEE Trans. Electron Devices, 64(8), 3174-3182, 2017.
Best Oral Presentation Award, 2016 PG workshop on Display Research.

8

#### Hall Mobility vs. Crystallinity in ITZO Thin Films



#### Field-Effect Mobility in hp-ITZO Channels

XXX 4 inch

> XXX XXX

10

5

V (V)

\*\*\* \*\*\*

15

20







|                                                             | - gs ( - /                  |                             |                     |  |  |  |  |
|-------------------------------------------------------------|-----------------------------|-----------------------------|---------------------|--|--|--|--|
| Comparison of hp-ITZO with other representative MO channels |                             |                             |                     |  |  |  |  |
| Channel                                                     | (In+Sn)/(In+Sn+Zn)<br>at. % | μ <sub>fe</sub><br>(cm²/Vs) | On-off<br>ratio     |  |  |  |  |
| a-ITZO [1]                                                  | >66.7                       | 27.9                        | 1.1×10 <sup>8</sup> |  |  |  |  |
| CAAC-ITZO [2]                                               | >66.7                       | 20.2                        | ~10 <sup>16</sup>   |  |  |  |  |
| a-IGZO [3]                                                  | >33.4                       | 10.1                        | >109                |  |  |  |  |
| CAAC-IGZO [4]                                               | >33.4                       | 7.7                         | ~10 <sup>19</sup>   |  |  |  |  |
| Poly-ZnO [5]                                                | 0                           | 12                          | ~108                |  |  |  |  |
| a-ITO [6]                                                   | 100                         | 29                          | ~108                |  |  |  |  |
| hp-ITZO [7]                                                 | 41.3                        | 27.3                        | >109                |  |  |  |  |



10

10

10<sup>-11</sup>

10<sup>-13</sup>

-10

-5

٥

(ح \_<sup>۳</sup> 10



- ✓ The utilization of corner-shared InO<sub>x</sub> polyhedra rather than the increase of In content for mobility boost.
- → Cost-effective TFT channels

[1] T. M. Pan, et al. IEEE Trans. Electron Devices, 64(5), 2233-2238, 2017.

[2] T. Takasu, et al. J. Soc. Info. Disp., 23(12), 593-599, 2015.

[3] K. Nomura, et al. Appl. Phys. Lett., 95(1), 013502, 2009.

[4] S. Yamazaki, et al. Jpn. J. Appl. Phys., 53(4S), 04ED18, 2014.

[5] H. U. Li, et al. IEEE Electron Device Lett., 36(1), 35-37, 2014.

[6] Y. Shao, et al. Adv. Func. Mater., 24(26), 4170-4175, 2014.

[7] S. Deng, et al. IEEE Trans. Electron Devices, 64(8), 3174-3182, 2017.



## Part 2: (Cost-Effective) hp-ITZO <u>TFTs</u>



Self-aligned (SA) TFT



Etch-stopper-layer (ESL) TFT

#### SA hp-ITZO TFTs (I)



TG-BC TFTs



 $\Delta V_p$  = kickback/feedthrough voltage





#### Advantages:

- ✓ Minimized parasitic capacitance → RC delay  $\downarrow \& \Delta V_p \downarrow \rightarrow$  accurate signal control
- ✓ Strong device scalability → higher-resolution displays
- ✓ One photolithography step removal → costeffective manufacturing

✓ ... ...

#### Key issue:

- Formation of highly conductive & thermally reliable S/D regions (e.g., plasma treatment? Ion doping?)
- $\rightarrow$  Two different PECVD SiO\_2 capping layers + differentiated O\_2 annealing strategy

### SA hp-ITZO TFTs (II)

How to form conductive & stable S/D region?

٠



#### Si depth profile in hp-ITZO with difference capping layers



- ✓ Capped by TEOS-SiO<sub>2</sub> → high-resistivity state → intrinsic channel regions
- ✓ Capped by  $SiH_4$ - $SiO_2$  → low-resistivity state (caused by unexpected donorlike Si doping during the deposition of  $SiH_4$ - $SiO_2$ ) → conductive S/D regions

### SA hp-ITZO TFTs (III)

• Process flow





- Gate insulator: TEOS-SiO<sub>2</sub>
- $1^{st}$  O<sub>2</sub> annealing at 300 °C for 2 h
- Interlayer dielectric: SiH<sub>4</sub>-SiO<sub>2</sub>
- $2^{nd}\,O_2$  annealing at 300  $^\circ C$  for 2 h
- ✓ The upper temperature limit of the whole processes is 300 °C.

### SA hp-ITZO TFTs (IV)



| Summary of key electrical parameters |                        |                  |               |                                          |                                          |  |
|--------------------------------------|------------------------|------------------|---------------|------------------------------------------|------------------------------------------|--|
| μ <sub>fe</sub><br>(cm²/Vs)          | V <sub>th</sub><br>(V) | On-off<br>ratio  | SS<br>(V/dec) | ΔV <sub>th</sub>  after<br>10 ks PBS (V) | ΔV <sub>th</sub>  after<br>10 ks NBS (V) |  |
| 19.56                                | -1.65                  | ~10 <sup>8</sup> | 0.105         | -0.2                                     | -0.35                                    |  |



- ✓ Thermally stable S/D regions
- → Extremely steep SS & excellent device stability against gatebias stress

### ESL hp-ITZO TFTs (I)

• Process flow (for AM-FPD backplanes)



- Simplified process flow (w/o 1<sup>st</sup> & 2<sup>nd</sup> thermal annealing) → Device F0
- General process flow (w/ 1<sup>st</sup> & 2<sup>nd</sup> thermal annealing) → Device F1

ESL hp-ITZO TFTs (II)



- No performance/uniformity/stability degradation  $\checkmark$ in Device FO despite the elimination of additional thermal annealing
- $\rightarrow$  A shorter production cycle and a lower thermal budget for cost-effective manufacturing.





17 S. Deng, et al. J. Soc. Info. Disp. 29, 318-327, 2021. Distinguished Paper Award, SID DW'2021.

#### ESL hp-ITZO TFTs (III)





## Part 3: Practical Applications

#### AMOLED Prototype Display



✓ By following the simplified process flow, the hp-ITZO TFT technology is applicable to low-cost AM-FPDs.

### Integrated Circuits (I)



### Integrated Circuits (II)





- Multicomponent hp-MO thin films have been developed by modifying both element composition and crystal morphology. Their electron mobility can surpass the upper limit in the amorphous counterparts.
- The hp-MO channels are applicable to high-performance TFTs with various structures. The cost-effective SA and ESL hp-ITZO TFTs have been demonstrated through device and processing innovations.
- The hp-MO TFT technology can support the implementation of energyefficient, fully transparent electronics applications.

#### Acknowledgements

 Prof. Hoi-Sing KWOK, Prof. Ching Wan TANG, Prof. Man WONG & SKL of ADT members (HKUST)



#### Collaborators:

Prof. Rongsheng CHEN (SCUT) Prof. Guijun LI (SZU) Prof. Meng ZHANG (SZU) Prof. Lei LU (PKU) Dr. Wei ZHOU (Meridian Innovation) Prof. Dongxiang Luo (SCNU) Prof. Yuan LIU (GDUT) Dr. Wei ZHONG (GDUT) Prof. Jun ZHOU & Jun's group (HUST)



• Facility platforms



ー 材料表徴與製備中心(清水灣) Materials Characterization & Preparation Facility (CWB

• Funders



■創新科複者 Innovation and Technology Commission UGC 大學教育資助委員會 University Grants Committee

# Thank you for your kind attention!

Sunbin Deng Email: sdengaa@connect.ust.hk



